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Effects of Pulsed-D.C. Discharge Plasma Actuatorsin a
Separated Low Pressure Turbine Boundary Layer

J. D.wall’
Air Force Institute of Technology Wright-Patterson AFB, Ohio, 45433

. C. Boxx', andR, B. Rivir*
Air Force Research Laboratory, Wright-Patterson AFB, Ohio, 45433

and

M. E. Franké
Air Force Institute of Technology Wright-Patterson AFB, Ohio, 45433

A pulsed DC dielectric barrier discharge plasma actuator is investigated to reattach the
simulated separated flow of a highly loaded turbine blade suction surface. Pulserates of 25,
50, 75, and 100 pulses per second were investigated at a nominal constant pulse power of 8.5
kW for a constant pulse width of 250 ns. The separation of the flat plate boundary layer is
induced with an adverse free stream pressure gradient distribution from an upper wall.
Phase-locked particle image velocimetry (P1V) was used to obtain two-dimensional velocity
field measurementsat 6 to 24 equally spaced phase-angles, depending on the pulserate. At a
pulse rate of 100 pulses per second the 70 % velocity contour in the boundary layer was
moved closer to the wall by 39%, compared to the unforced case, 15 mm downstream of the
actuator.

Nomenclature

c = bladechordlength(m)

C = (P —P)I(1/2p1?)

Ps = localstatic pressure (N/m?)

P, = total pressire (N/n)

Re. = pUinClu

T = et

U = local streanwisevelocity (m/s)

Uint = freestreanvelodty atinfinity (m/s)

\Y = localfreestramvertical velocity (m/s)
Vint = freestreanvertical velocity atinfinity (m/s)
p = freestreanair density(kg/nv)

H = viscosity(Ns/nT)

. Introduction

HE demand for greater peifformanceand efficiency in low-pressue turbine bladeshaslead to higher airfoil

loading. A limiting paramete for blade loading is the increasd leved of boundarylayer separationat low
Reynolds numbers. In an effort to maintain high blade loading, forestall flow-separdion or reatbch already
separatedflows over the Low PressureTurbine (LPT) at low-Reynoldsnumbers passive and active flow-control
medanismshawe beeninvestigaed. Plasnaexdtation of thewall regionoffersa metod of maripulating
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* Senior Scientist AFRL/PR, 1950 Fifth Street WPAFB OH 45433 AIAA AssociateFellow.
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the nearwall velocity profile andto induce boundarylayer reatachmert. The effects of electrostat fields on fluid
flows have beendemorstrated over many yeas. Velkolff* investigatedelectric field effects on heattransfe and
pressuradistributions for stagiaion andflat plate boundarylayer flows. Roth et al? found thata dielectic barrier
discharge(DBD) with an agymmeéric electrodecorfiguration mountedon a flat plate could reducedrag andalsothe
overall boundarylayer thickness by inducing local accéeraion of fluid near the wall. Sincethen a numberof
resaarchershawe chamcteized the effect of theseactudorson flow overagodyramicsurfaces.Corke etal.? studied
flush mounted ard subsurfaceplasmaacuabrs as a meansto introduce controlled disturbancesinto flow over
axisymmetric bodies in supesonic flows of Mach numbers 3.5 and 6. Postet al.* studiedplasna actiatos asa
means of controlling flow sepraion over a NACA 66;— 018 airfoil over Reynoldsnumbes rangng from 77,000to
460,000. They demonstratd an 8 degreeincreasein maximumangke of atack, accanpaniedby a full pressure
recoveryafter stall. Postet al.® alsostudiedthe effectof plasmaacduatorson an oill ating NACA-0015airfoil and
were ableto achievea highercycle-integrated lift .

Seveal investgaions of the application of the DBD actuabrs to separaed LPT casade flows hawe been
reported. Hultgrenetal ® studiedanarrayof asymmeéric electrale DBD plasmaactuaors mountedon aflat platin a
simulatedpressurefield of the sudion side of a P&-B LPT bladeat Reynolds numbes rangingfrom 50,000 to
300,000. Theyconcludedheir phasedarrayDBD plasmaactuabr was aneffecive devicefor separatiorcontrol on
the LPT blade. List et a.” studed an asymmetic eledrode DBD plasna actuaor on a linearcascadef Langstm
turbine blades and found the actuatos could reduce profile lossby 14% at low Reynoldsnumbers(Re= 30,000).
Huanget al.? studied plagma acuators postioned at variouschordlocaions on the surfaceof a Pak-B profile in a
linear turbine cascad over Reyndds numbers ranging from Re. = 10,000to 100,000. They found the boundary
layer flow reatachmat point induced by the plagma aduator was highly senstive to free strean turbulenceand
Reynoldsnumber.

Althoughthe studies abovehave produced useful insight into the effed of plasmaactuatorson a variety of
boundarylayerflows,theyhavereliedalmostentirely upontime-averagedmeasuremets. While suchmeaurements
are useful in studying global effects and trendsthey also inevitably obscue the periodic nature of the physical
medanismthrough which these actuatos force the nearwall boundarylayer flow. Time-aveaged measuremerg
are particularly poorin detemining what phase of the aduator cycle is domnantin affectingchang in locd and
globalflow field chamcteistics. For exampe, it has been noted by previousresearbers(Rivir etal., > andEnloeet
al,, *) that clusersof very shot duration, 10's of ns, currentspikesform during the ignition phaseof the DBD
aduator cycle. Peakcurrent during theseeventscan be several ordersof magnitudehigher thanthe peakto-peak
currentvariaton elsewhee in the cycle Figure 1 shows a charactristic voltage and currenttrace measired in
continuousAC DBD dischages.

The objectve of the curent studywas to investigae pulseddc dischageswith low duty cyclesto determire the
sensitivity to duty cycle and power In this study the
power per pulse was held constant andthe duty cycle ' ' 1 1 ' —Tn°-02
varied. Pulsal DC dischages have been previously
investigatedn Rivir et al.” in quiescenair, for pulse
lengthsfrom 22 nsto 2 ms asillustratedin figures2
and3. Thesepulsed dischargeshave higher voltages
currents and powers,during the pulse typically 2-15
kW butalsoashigh as70 kW. In this effort the pulse
width wasstandardzed at 250 ns. The duty cycle was
varied by varying the pulse rate from 25, 50, 75, to
100 Hz. This realts in an average power variation -5000}
from 0.05to 0.2 watts. In contrstthe continuows AC

5000

Potential (V)
o

-0.02

power levels varied from 5-25 watts. The plasma o e (5)4 6 1o

field. The flow-field wasa fully semratedflatplate

boundarylayer in a free stream pressuredistribution

designedto simuate that of a generc low-pressureurbine blade. The measuremets usedin this study included
high spatiatresdution, phaselocked PIV and 31 pressureaps along the test section. Two-dimensionalvelodty
field measwenments were aquired at each of 6 to 24 points between plasna pulses 2000 pairs of images were
comparedfor eachpulseratepointswith the cameradoubleframe framing rate at 600 framespersecond. Low order
frequencyspectrumswere compared for eachpulserate The actuatorredu@d the boundary layer for all pulserates
investigated.
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1. Experimental Apparatus

A. Plasma Actuator

This experimentusedthe samefacility andexperimetal appaatus which is describedn defil in Boxx eta
The DBD flow-contral actuaor usel in this studyis shownin Figure 2.. It consistedof two coppe electrales
separated by a layer of fiberglasslaminae. The sedion of the electodeswhere plagma is generatedneaued
95 mm by 3.2 mmwide and0.036mm thick. Thefiberglasslaminatesgparaing themwas1.56mm thick and hada
dielectric strength of 28 kV/mm. The upperand lower electrodesdo not overlapin the y-axis but areplaced in an
asymmetricconfiguraion with the upper electodeon the upsteamsideand the lower oneon the downstream The
line correspoding to the interface betweenthe trailing edgeof the upper electrodeand the leadirg edgeof the
embeddeds takenastheorigin of thex-y coordinde sysem

I 11,12

— | Separated

Boundary

— ™ Layer

Plasma

Discharze Dielactric

Barrier

|

Acody nanic
Surface
Figure2. Schematic diagram of thedielectric barrier discharge flow-control actuator configuration.

Elzctrodes

The actuate wasfabricatedfrom a doublke-sidedcoppe-clad circuit boardusing a photolithographytechnique
Actuators fabricated from this material are inexpersive to produe and allow highly accurate placemen and
alignmentof the electrodes for a uniform discharge. The fiberglass laminate tendsto degradewith increased
exposurdo the plasmadischarge. The exposedeledrodeandcircuit boad surface werecoaedwith alayerof high-
temmperatureenamel. This proteded the surfaceandresuted in a slight increasein the dielectric strengthof the
barier. The electrodeswere driven with a pulsedc power circuit. This circuit is shown in Fig. 3. This circuit
consstedof a 12kV, 0.33A Glassnan DC powersuppy, a 25rF capacior, anda Belhkemodd HTS-181oraHTS
151 high-voltagesolid stae switch. The HTS-181 was usedfor all but the 100 pps measurmens andis rated to
18kV and60A. In the curent study, voltagewasfixed at 8.5kV. On-time for the switch was250ns  Electrical
leadlengthard separdion wereminimizedto redue exterral circuit effects.

333kQ 360 Q  Current col
AN oo WA
J
switch
] g Electrode

. —— AR
Glssman r,.

HV supph

/1
aqoad 2307

Figure 3. Pulsed-dc discharge power delivery circuit.

B. Low-Speed Wind Tunnel

All experimentsvereconducked in the low-speedwind-tunnelsection of the Turbine Aero ThermalBasic
Researcliraclity atthe Air Foree Research Laboraory. Thelow-spee wind-tunrel hasarectangulateg-section
measuring38 x25 cm. andits sidesare 2.54 cmthick Plexiglas The voltage wasmeasiredusinga par of 1000x
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voltageattenwation probes, TektronicsModel P6015A. Currentwasmeasued with a PearsorModel 4100 current
coil. In orderto corred for induction and capadiance inherentin the powerconditioring, a baselhe caseusing a

seies of low-impedancepure resistasin place of the actuatomwas also utilized to makereferencgpowerlosesin the
circuit.

31 Pressure Taps

(mmfey:z::]

Figure4. Experiment configuration, showing low-speed wind tunnel, PIV system and plasma actuator switch
components.

Temperatureof the flow throughthe tunrel wasreguated and setto 26.6° C using a water-cooledchiller. Flow
through the facility was seedal with propyleneglycol/water droplets (nomindly 4 um diameter)from a Rosm
Model 4500fog geneator. The aduaor was mountel on a flat plate located in the test-sectionof the tunrel. A
recess milled into the uppe surface of the plate ensued the acuabr was flush with the suface. The active the
plasmageneating regionof the acuator spannedonly the center 95 mm of the platein order to avoid wall-effects
from thesides of the tunnd.

The upperwall of thetunnd wascontouredto provide the sucton suface presuredistribution aporoximating
that of a gereric aft-loaded low-pressurdurbineblade. Theuppertunnd wall wasfabricatedwith a rapid prototype
inset that provided a slot to provide sucton to creae the separabn on the flat teg surfaceanda slot for the laser
light sheet. In orderto keep flow attacled over the conbur a vacuumwas applied to a 6.25 mm long slot which
spansthe width of the block downstreanof the throat of the contouredsection. The laserlight sheet window was
closedwith a Plexiglaswindow contouredto the wall. The ssiction wasgeneratedisng a throttled, 2HP vaauum
system. The flat plate test section hasa 4/1 ellipticd leadingedgeand 31 offsetpressue taps locatedout of the side
wall boundary layer. The electrode structure was locatedat the 63% axial chord location and downsteam of the
initial separ#ion location.

C. PIV System

The PIV sygem useda duathed, frequency-doubled,flashlamp-pumpedNd:YAG laser, New Wave Pegesus
andan adjustabk light-arm to ddiver sheetillumination to the testsecton. Light scatered from propyleneglycol
seeding droplets was imagad with a high frame rate, 1024x 1024 pixel resolution PhotonrAPX CMOS camera
The canera wastriggered in a two-frame burst modeto producea frame-straddlingPIV system. The camera was
equippedwith a 200mm lens, Nikon, AF-Nikkor, operaing at f/11. The field of view of the PIV systemwas
17.9x 17.9mm. Each pixel corespondsto 1745 um in physical spacefor approximately 1-to-1 imaging The
canera and laserswere synchronizd using two pulse/delaygenerator timing boxes Stanford Resesch Sydems
DG-535 and Quantun Compcseas 9300 Series respectvely. The imageswere procesed with Dante¢s Flow
Managerwith a adaptivewindow offsetcrosscorrelation algorithm. The final window sizewas 32 x 32 pixelswith

50% overlapfor afinal spaial resolutionof ~ 0.56mm and vecta placementevery ~ 0.28 mm. The datawasthen
post-processdusingin-housecodes

D. Boundary Conditions

The driver signal for the DBD actuatorin this studywassetto a pulse length of 250 ns andhad a peakto-peak
potential differenceof 8.5kV. Thelocal freestrean velodty abovethe aduator locationwas nominally 1.8 m/sand
Tu=4.6% (Tu=+u?+v? /U2 +Vv?, whereU andV arethe local free streamvelocity comporentsin the x ard y
directions).The static-pressuredistribution alongthetestsedion wall wasmeasurect 31 pointsusng a
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GE - Druck LPM 9481, 0.2" H,O full-scak range presaure transduce in a Scanivalve.  Thesepressuresvereused
to conputethe C;, distribution shown in the plot presentedin Fig. 5. C, wasdefined as C, :(R —Ps)/(}/zlﬂz)' where

U is the free streamvelodty upstreamof the actuabr. As notedabowe, sucton was applied to the cortouredupper
surfaceof the wind-tunnd test-sectionin orderto preven flow-separatn there. The plot shownin Fig. 5 alsoshows
the C, distribution for the casewhere no siction wasappliedto the uppersurface. It canbe seenfrom the similarity

of the two profilesthat althoughthe applied sucton resuted in an attachedflow over the uppersuface, it did not
resut in a substantial aterationof the free streampressurecharaceristics. Comparing our measuredC, distribution

to that of a genericlow-pressue turbine airfoil, we deerminedthatthe contouredestsecton producedandeffective
chordlengt of 35 cm, resulting in a simulaed chord-Reynoldsnumberof 23,500for this study.

45
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Figureb5. Cp distributionsfor simulated test section.
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In order to beter chaacteiize the nature of the flow
throughthe testsection,we also performeda seresof wide- 5= Figure 6. Streamlines of flow through the test-
field PIV measuremats using the systemdescribedabove. : section in thevicinity of theactuator. The dashed
The streaminesderived from thesemeasurenerts areshowry lines show the approximate location laser-sneet
in Fig. 6. Overlaid on these streamlires are the relaive ~ Cutoff, where particle-dropout was seen toresultina
positions of the contourel uppe sedion of the wind-tunnd, ”. "€9'O" of lower SNR.
including the slot where the sudion was appled, and the = steamines: steamines

oute bounds of the lasersheet illuminaion. The signalto—noimmaﬁi}g‘oqgﬂghe‘mmwnempm pﬂno‘m@d qf‘fuqqgkly{ @by

the edgesof the lasersheet, which restits in the misshaperstreanlines It is clearfrom the® streaminesthatthe
sudion appled to the contoural uppe secton of the tunnelinduceda smdl but noticeable =~ 0.2nm/'s velocity in the
vertical direction. Although this added vertical velocity was undesirabde it was necesary in order to maintain
stability and uniformity in the testsedion. The vertical velocity induceal by suction provided an addiional
chdlengeto flow-reattacimert.

[11. Resultsand Discussion

A. Pulsed DC Voltage, Current, Power, Velocity M easurements

22 ns pulsesand2 pspulsesareshownin Fig. 7 and8 for the HTS-151 switch at a duty cycle of 100 pps Duty
cyde andppswill be usedinterchangeablyand is definedasthe % time the plasmais on per secand. This provides
an averagepower of ~1watt at this pulserate with a pe& powerof 60 kW/pulseandan averageof 2-7 kW/pulse
The HTS-151 switch wasusedto provide the 100 ppsmeasuremets. The streamlireswith plasrma on and off are
shown in Fig. 9 andthe contours of the 70% bourdary layer streanline areshown in figure 10 for a 250 ns pulsed at
100 ppsat an averagepower of 0.213 watts comparedagainstthe coninuous AC dischargeat a powe of ~5 -25
watts. The HTS-181 was more difficult to characteize due to changsin the external circuit which reaulted in
oscillations
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Figure9. Comparison of streamlines plasma off and on HTS-151 250 ns pulse length @100 pps.
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Figure 10. 70% contour HTS-151 with a 250 ns pulse length @100 pps.

While the separationwas not entirely eliminated for all duty cycles evaluaed, 25, 50, 75, 100 pps (average
power= 0.063,0.011, 0.159,0.213 watts, respedtely), the 70 % contourwas alwaysreducedand movedcloserto
the wall. Thelower duty cycleswere evaluated with the HTS-181 switch in placeof the HTS-151. The HTS-151
failed following 100 ppstesting. The HTS-181 hasa voltage and currert rating, 18 kV and 60 A. Long delivery

6
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timesprecudedimmealiateregdacementof the 151 switch. The same pulselength,250nswasusedfor the HTS-181
switch. The continuows AC caseis shownin Fig. 11 for conparison at a power level of ~25 watts and the
magnitudereduction of the 70 % contour is extrapoltedfrom the 50% reducton at x=10 mm to 54% at x =15mm.
The averag@ power levd in the pulsedcaseis 0.213 watts, two ordersof magnitudelessthanthe coninuouscase
from Boxx etal."2. Theduty cyclesfrom 25to 100pps70 % conburs are summarize in Fig. 12 and13. The75
Hertz caseat 70% is suspetas all other 75 Hertz cases showsimilar ~ 17-23% redictions

(E=] S— 18F
E = E
16F = U 1BF p U
E = 1,80 E 1,80
g (= 167 14 163
T F = 15 2k 146
E = 141 E 129
12E (= £ 12F
Eur = 129 E12F 1719
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. 013 E 042
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2F 2F
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Figure 11. Separated flow actuator off / attached flow actuator on continuous 3 kHz, 25 Watts, U m/s
70% velocity contour attenuated 50%, x = 10mm, extrapolated to 54%, x = 15 mm.
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Phae locked measurerants were possiblewith the continuois AC expeiments using multiple pules The
double frame time for PIV was 100 p seconds to allow accurae resoldion of the nominal 2 m/s free stream
velocities. The framerate sdected for the multiple frameswas600 Hz. 3000 Hz AC saurcesthenhave3 double
frames per cycle andthe 0.250 s pulselength DC pulseswould hawe 6 to 24 doubleframesbetwee pulses @100
and25 pps. Thepulsewould be conveced 0.6 mm (sincethe turbuent spotat the wall is convecte at ~30%of free
stream) to 2mm for the free streamdownstreanbetweencameraframesor 3.6 to 12 mm betweerplasmapulsesat
100 pps

Figures14 and 15 were created by taking columns(x or pixel numbe) at 20%, 40%, 60% of the PIV window
andthenplotting three curves for the 500 frames. Becawssethe x coordnates arediredly proportionalto the pixel
number andthe camea framing rate is constart at 600 framesper secondrig. 14 and 15 canbe conwertedto time
andanvplitude. The useof three columrs resuts in a usablefrequency spectrum of only 10 Hertz In Fig. 16 five
columrs havebeenusedto computethe frequency spectrum which allows resoldion of frequenciesof up to 20
Hertz. Prevus expgiments have shownthe 10-20 Hertz frequendes to be characterisc of the sheddnhg of the
separationbubble.

IV. Conclusions

The effects of pulse rates of 100, 75, 50, ard 25 ppswere investigaéd at a constantpulsepowerin a simulated
P&k B pressuralistribution for aReof 23,500 The pulsevoltage wasfixed at8.5kV and thepulselengh at250ns
which resultel in a nominal 8.5 kW/pulse or averagepowersof 0.213 0.159,0.106, and 0.053wattsregpectvely.
The simulated pressuredistribution resulted in separatin upsteam of 63% Cx where the actuator was locaed
Phaselockedparticle imagevelocimetry (P1V) wereusedto obtain two-dimensionalvelocity field measurementat
6 to 24 equdly spacd phaseangles,dependig on the pulserate. At a pulserate of 100 ppsthe 70 % velocity
contour in the bounday layer is moved closer to the wall by 3%, compared to the unforced case, 15 mm
downstreanof the actuator Frequency spectrumswith the plasma on showed expected separdion bubbleshedding
frequenciesndsmall increasesin amplitude.
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